
I’
i

Observations on SOFIA Observation Scheduling:
Search and Inference in the Face of Discrete and Continuous

Constraints
Jeremy Frank and Michael Gross* and Elif Kiirklut

NASA Ames Research Center

Moffett Field CA 94035-1000
{frank,ekurklu}@email.arc.nasa.gov, mgross@mail.arc.nasa.gov

MS N269-3

Abstract

We did cool stuff to reduce the number of IvPs and
BVPs needed to schedule SOFIA by restricting the
problem. The restriction costs us little in terms of the
value of the flight plans we can build. The restriction
allowed us to reformulate part of the search problem
as a zero-finding problem. The result is a simplified
planning model and significant savings in computation
time.

Introduction
The Stratospheric Observatory for Infrared Astronomy
(SOFIA) is NASA’s next generation airborne astronom-
ical observatory. The facility consists of a 747-SP mod-
ified to accommodate a 2.5 meter telescope. SOFIA is
expected to fly an average of 140 science flights/year
over it’s 20 year life time. The SOFIA telescope is
mounted aft of the wings on the port side of the aircraft
and is articulated through a range of 20 to 60 degrees
of elevation. The telescope has no lateral flexibility;
thus, the aircraft must turn constantly to maintain the
telescope’s focus on an object during observations. A
significant problem in future SOFIA operations is that
of scheduling Facility Instrument (FI) flights in sup
port of the SOFIA General Investigator (GI) program.
GIs are expected to propose small numbers of observa-
tions, and many observations must be grouped together
to make up single flights. Approximately 70 GI flight
per year are expected, with 5-15 observations per flight.
The scope of the flight planning problem for support-
ing GI observations with the anticipated flight rate for
SOFIA makes the manual approach for flight planning
daunting.

Automated flight planning for SOFIA involves se-
lecting observations to perform and scheduling these
observations. These discrete choices are constrained
by complex continuous constraints. Verifying that the
constraints are satisfied involves solving both Initial
Value problems (IVPs) and Boundary Value Problems
(BVPs) to find the aircraft’s ground track, determine
aircraft fuel consumption, and check that observations
stay within proscribed elevation limits. A sampling

*University Space Research Association
+QSS Group, Inc.

Copyright @ 2003, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

based ‘approach called Forwardplanner (FK03) works
well for a simple SOFIA model, but is too costly for a
higher fidelity model. The main reason for this is the
high cost of solving many IVPs and BVPs in the higher
fidelity model. A set of well-founded assumptions al-
lowed us to reformulate the model and eliminate a large
number of calls to solve the IVPs and BVPs; while this
reformulation actually reduces the search space, empir-
ica! results show thzt the resu!ting algorithm produces
high quality flight plans at a fraction of the computa-
tional effort.

The rest of the paper is organized as follows. We
first describe the high fidelity SOFIA model. We then
re-examine the Forwardplanner algorithm and describe
a principal source of the increased computational costs
of flight planning. We then describe a way of migrat-
ing some of the search into the underlying constraint
reasoning component by means of some well-founded
assumptions. This allows us to eliminate a potentially
large number of expensive ground track construction
steps without sacrificing the ability to construct good
flight plans. We perform several experiments to vali-
date the approach. Finally, we discuss the implications
of our reformulation of the computational search on the
planning model.

Improving Model Fidelity
The SFPP (Single Flight Planning Problem) consists
of a number of observation requests, a flight day, and a
takeoff and landing airport. The objective is to find a
flight plan that maximizes the summed priority of the
observations performed while obeying the constraints
governing legal flights. We also presented Forward-
Planner, a progression style planner using a cornbina-
tion of lookahead and heuristics to solve the resulting
SFPP. The aircraft activities are take-off, land, Bight-
leg and dead-leg. Flight-legs require tracking an object
and obeying visibility constraints, while dead-legs can
be used to reposition the aircraft to enable flight-legs,
and only consume time and fuel.

Insert formal description of math here. Trying
to do this with my present formulation is awful!
What I’d really like is the heading as a function
of time (with initial position and object coords
as constants), same for elevation. Uncertain if
Cartesian formulation better or worse?

I
I

We summarize the relevant constraints on the prob-
lem, originally described in (FK03). As before, we
use the astronomical conventions established in Meuss
(Mee91). The constraints on object elevation are as fol-
lows. Suppose that @i is the initial latitude, Li is the
initial longitude, 8i is the (Sidereal) time at which the
leg begins, Of is the time at which the leg terminates,
6 is the observation declination, (Y is the observation
Right Ascension, bi is leg heading at the start of the
leg, bf is the heading at the end of the leg, h is the
object elevation (as a function of object coordinates,
position and time), Af is the object azimuth at the end
of the leg (again, a function of object coordinates, po-
sition and time), and d is the flight distance. Assume
that the Earth is a perfect sphere, and that the aircraft
flies a Great Circle segment. The end position of the
aircraft after the leg is given by: check these equa-
tions, reverse engineered from sphtr

7T 7T
q5f = sin-' [sin(q5i) sin(; - d) + cos(q5i) cos(; - d) cos(bi)]

sin(bi) COS(i - d) cos(&)
sin($ - d) - sin(q$) sin(4f)

Lf = ~i + tan-'

The object elevation is given by:

H E 8 f - L f - a (3)

sin h = sin(q5p) sin(b) + cos(4f) cos(6) cos(H) (4)
The object azimuth is given by:

(5)
sin(H)

cos(H) sin $f - tan(6) cos(8f)
tanAf =

Finally, the aircraft heading is given by:

sin(bi) cos(5 - d)
sin(q5i) - sin(; - d) sin(q5f)

bf = tan-'

Here's the nonlinear DES form of this; Carte-
sian formulation better, bu t above equations
more intuitive for defining the zero-finding prob-
lems.

Since the telescope has no lateral flexibility, the air-
craft's ground track is constrained by the requirement
to track the object. The telescope points out the left
hand side of the aircraft, so the constraint is bf +270" =
Af. In addition, the telescope elevation h is limited to
between 20' and 60". Both of these conditions must
hold throughout the observation. The former actually
constrains the ground track, leading to a system of dif-
ferential equations defining the ground track. The lat-
ter constraint is a condition on the elevation that must
be satisfied. We write the equations of motion for the
aircraft assuming a spherical Earth of radius a and con-
stant ground speed V. If we interpret A and h as func-
tions of (ultimately) time, we can then write a system
of differential equations as follows:

--L(6) d = - V . sin(A(8) - r)
d8 a cos $(e)

(7)

By virtue of simple physical intuition, there is a
unique solution to these equations; that is, there is only
one ground track the aircraft could follow in order to
track an object of known and fixed cy and 6 beginning
at a known initial position and initial time. We can
rewrite the elevation equations as a function of time:

sin h(8) = sin(qj(8)) sin(b)+cos(#(8)) cos(&) cos(O-L(O)-a)

Similarly, we know from physical intuition that the
change of elevation described by this function is con-
tinuous and differentiable with respect to time. That
is, the elevation equation is constrained by the function
governing the aircraft's position, which we similarly ar-
gued was well behaved. Thus, we can compute $ and,
armed with the functions +(e) and L(B), find the solu-
tions to = 0.

The set of constraints considered in the previous pa-
per comprise a simplified version of the problem. In
particular, the following factors were ignored:

0 The impact of the true fuel consumption model of
the aircraft on the flight time. Previously, we sim-
ply used a maximum flight duration as an analog of
fuel consumption. The fuel consumption is actually
a function of aircraft weight, Mach number, change
in altitude, and outside temperature. Since flying re-
duces aircraft weight, the flight duration constraint
in the old model is replaced by a partial differential
equation that governs the fuel consumption.

0 The impact of the Earth's shape on the ground track.
The Earth is actually an oblate spheroid whose polar
diameter and equatorial diameter are not the same.
This has a reasonable impact on the actual ground
track, and accounting for this invalidates the differ-
ential equations in the previous model that constrain
the ground track.
The impact of winds on the ground track. As the
aircraft flies, the wind direction and velocity changes
the ground speed. This irmiiidates the assumption in
the old model that the ground speed is constant.

In addition, we previously Euler's method (Fer81)
to solve the (simplified) aircraft dynamics equations;
while fast when assuming a spherical Earth, it is prone
to error, and harder to use without the spherical Earth
approximation and deviation due to winds. These con-
straints are solved using 5th-order Runge-Kutta approx-
imation (Fer81) which calculates ground track se,gnents
on the surface of the Earth; this approach constructs
only as many Great Circle segments as necessary to
keep the error within a fixed tolerance. Mike, this is
probably wrong: help fix this. A gridded wind and
temperature model is available to correct the ground

(9)

I

track in the face of winds and provide temperature data
for calculating fuel consumption. In addition, an air-
craft performance model from Boeing is used to com-
pute the exact h! consumption fox each of the 747-SP’s
engines, providing a much better estimate of flight time
and correct fuel consumption. Additional features in-
clude the ability to track non-stellar objects such as the
sun, moon, planets in the solar system, and comets, as
well as corrections for the required aircraft heading due
to aircraft pitch.

Unfortunately, the costs of solving these new con-
straints and the higher accuracy of the flight dynamics
constraints lead to a serious degradation in computa-
tional efficiency. Using the new reasoning system, the
Forwardplanner algorithm takes roughly 300 times as
long to build a flight plan than it does using the simpler
constraints and constraint reasoning system.

Explaining The Performance Hit
Our investigation into the Forwardplanner algorithm
revealed that we spend a considerable amount of time
deciding which observations are feasible at any point in
the planning process before ev&mticg them. An ob-
servation o is feasible at time t and position p if there
is a dead-leg of possibly zero duration that ensures that
the observation is within the ele$ation limits at t’,p’,
the observation stays within the elevation limits for the
required duration of the observation, and the aircraft
can fly to the landing airport after the observation is
finished. If the observation is not visible at t , p , For-
wardplanner performs a search for the shortest dead-leg
that makes the object visible for a flight leg of the re-
quired duration, and still allows the aircraft to fly home
after the observation is finished. This search is done by
first changing the latitude of the aircraft to make the
object visible, then performing a brute force search to
reduce the dead-leg duration. If the resulting dead-leg
exceeds a bound D the observation is considered in-
feasible. Each flight-leg and dead-leg construction step
requires solving an IVP, while each check to ensure the
aircraft can flight to the landing airport requires solving
a BVP.

get data on how many dead-leg search steps
are usually performed In the worst case, this re-
quires Forwardplanner to solve a very large number of
IVPs and BVPs. This is true even though the dead-leg
duration is limited, as are the heading choices for the
enabling dead-leg. It is also worth noting that the dis-
cretization of dead-leg headings and durations in For-
wardplanner is primarily for computational efficiency,
and can result in missing some dead-legs that enable ob-
servations. With the increased computational expense
of each leg construction step, it is important to reduce
the number of leg construction steps as much as possi-
ble. At the same time, we would like to eliminate the
discretization of dead-leg parameters. We focus on this
throughout the rest of the paper.

Before moving on, there are a number of points worth
making. First, the shortest dead-leg making the object
visible immediately after the dead-leg may not make

the object visible for long enough. Suppose the aircraft
is at high latitude. It is possible to fly West towards an
object that is setting and make this object appear to
rise. Observing the object will require flying perpendic-
ular to the object, thus making it appear to set again.
It is easy to construct a case where the aircraft may
need to fly a longer dead-leg to enable an observation
of the right duration. Such an object would have to
be valuable to justify adding it to the flight plan; how-
ever, recent studies indicate that such Northerly flights
are likely to be common, so this is a case worth bear-
ing in mind. Similarly, the shortest dead-leg making
the object visible for long enough may not enable the
aircraft to fly home after the observation is completed.
However, this only happens if the flight is almost fin-
ished. Thus, failing to establish this condition may lead
to missing only one observation; the likelihood that this
observation is critical to making the flight a good one
is low, and is not as important a consideration as the
previous issue.

Handling the Higher Fidelity Model
In this section we describe how to change the solution
methodology to reduce the cost of finding plans with-
out sacrificing performance. First we describe a modi-
fication to the Forwardplanner that restricts the set of
plans that can be built, and show empirically that this
leads to an increase in speed without sacrificing per-
formance. We then show how to leverage this change
to get an even larger increase in speed, again without
sacrificing performance.

Restricting the Set of Plans
The feasibility check may requires a large number of
expensive BVP checks to ensure that the aircraft can
return to the landing airport. If the shortest dead-leg

. enabling. an observation makes it impossible to return
home, we consider lengthening the dead leg in the hopes
that the resulting flight leg will carry the aircraft closer
to the landing airport. This is not as counter intuitive
as it seems, due to the complexities of the ground track.
However, it may be a waste of time, since the aircraft
will trivially be in range of the airport for at least half
the flight

We can restrict the feasibility check in the following
way: first, we find the shortest dead leg that enables
the observation for the desired duration. If the aircr2k
can return to the landing airport after completing both
this dead-leg and the observation, then the observation
is feasible, otherwise it is not feasible. It might be pos-
sible to find a longer dead-leg that allows the aircraft to
return to the landing airport, thus using this policy will
exclude some flight plans. However, these will generally
be confined to the latter half of the flight; furthermore,
we expect a performance degradation only when high
priority observations are excluded.

figure showing this works goes here

‘SOFIA’S nominal operation has the aircraft take off and
land at the same,airport; this assumption only holds in such
cases.

1

beef this up a little Once we have committed to
this policy, we can introduce another performance en-
hancement. Forwardplanner requires collecting all of
thp feasible observations, heuristically ranking them,
and subsequently selecting one to add the flight plan.
This requires solving all of the BVPs up-front. How-
ever, we can postpone the solution of the BVPs until
after deciding to add an observation to the fiight plan.
If the observation chosen to extend a flight plan fails to
satisfy the requirement, then it is discarded and another
extension is chosen. This requires caching *he enabling
dead-leg with the observations in order to avoid search-
ing for them again, and also requires re-normalizing the
distribution and re-sampling. However, the probability
of choosing any feasible extension of the flight plan is
unchanged, and the expected number of BVPs to solve
is reduced when most of the extensions are feasible and
annecdotally this is the case; validate this with
Elif.

figure showing this works goes here?

Changing the Division of Labor
We have shown how to reduce the number of BVPs
that must be solved to produce good flight plans. How-
ever, even with this improvement, brute force search
is still required to find the shortest dead-leg that en-
ables the observation. In this section, we show how to
eliminate the brute-force search. We take advantage
of the new restricted feasibility condition by defining
a function whose zeros correspond to the properties of
an approximation to the shortest dead-leg enabling the
observation. This defines a sub-problem that can be
efficiently solved by using zero-finding algorithms such
as Newton’s Method. Because the resulting formula-
tion allows us to search the full continuous space of
dead-legs, this is an improvement over the discretized
brute-force search done in the previous version cf For-
wardplanner.

Replacing Search With Zero Finding
Using the restricted conditions on object feasibility, the
dead-leg construction phase of the feasibility check re-
quires finding the heading and duration of the shortest
dead-leg that enables the observation for a sufficient
amount of time. Most often, this occurs because an
object is not initially within the elevation limits. How-
ever, sometimes it occurs because an object violates the
elevation limits during the flight-leg, even when it is ini-
tially visible.

figure needed? Let us consider the feasible region
of an observation 0. This region is the set of positions
on the Earth from which the observation is visible, and
is the annulus defined by two circles centered at the
nadir position of o whose radii are the coelevation lim-
its of the telescope (in SOFIA’S case, the radii of these
circles are 30 and 70 degrees of arc). Let us now con-
sider the properties of the shortest dead-leg in terms
of the feasible region. Initially the aircraft is outside
the feasible region. We want the aircraft to be in the
feasible region after completing the dead-leg. Now, the

shortest leg would put the aircraft on the boundary of
the feasible region, as opposed to anywhere strictly in-
side it. This corresponds to a condition that the object
elevation being at one of the two extremes. If the air-
craft begins inside the inner circle of the annulus, then
we want the object to be precisely at the the upper
telescope elevation limit, while if it is outside the outer
circle, we want the object to be at the lower telescope
elevation limit.

If the object was fixed relative to the ground, we
could simply fly directly towards the object, since this
maximizes the rate of change of the object elevation.
However, as we mentioned, the object appears to move
across the Earth as the Earth rotates. We could fly a
dead-leg that tracks the object as it moves, but that
would not minimize the flight distance. We know that
a Great Circle arc minimizes the flight distance, but
what Great Circle arc should we follow? We use the
following intuition: we fly a Great Circle arc that ends
with the aircraft flying directly towards the object to be
observed. Intuitively, this is the correct policy when the
object is nearly in view, or near the end of longer dead-
legs. Observatory policy will normally prevent dead-
legs longer than a few tens of minutes, so this intuition
will likely produce very short, if not ”locally optimal”
dead-legs.

Thus, we have the following problem: find b,, d such
that Fl(b,,d) =< f1(b,,d),f2(b2,d) >=< 0,O > where
fl(b,, d) = bf - A f is the difference between the object
azimuth and the final heading of the aircraft after flying
the dead-leg defined by b,, d, and f2(b,, d) = e - h is the
difference between the final object elevation and the
telescope elevation limit e closest to the initial object
elevation. Equations 1 to 6 show how to compute all of
the quantities needed to define F1.

Now let us consider the case where the object vi-
olates the elevation limits at some point during the
observation, regardless of whether or not it is initially
visible. Using the geometric interpretation of the fea-
sible region again, we see that the flight track exits
the annulus (and possible re-enters it later on). In
this case, we can set up a function very similar to
that we used when the observation was initially out-
side the feasible region. We now want to find b,, d such
that F2(b,,d) =< fl(b,,d),fS(b,,d) >=< 0,O >, where
f3(h, d) is the difference between the extreme object el-
evation achieved during the flight-leg and the telescope
elevation limit violated during the observation. The
intuition behind this is that the dead-leg we wish to
fly should just barely nudge the observation inside the
feasible region. f1 remains the same. Unlike the pre-
vious case, where we only needed to compute quanti-
ties like position and object elevation at fixed times,
we now must find either the minimum or maximum of
the elevation over the course of the flight-leg. If the
extreme elevation occurs at either the beginning or end
of the flight leg, this only requires evaluating Equation
4. Otherwise, it requires a more expensive function OP-
timization step Mike, what algorithm used to do
this? how expensive in practice?

In both cases, we have now reduced the problem of
finding the shortest dead-leg to the problem of finding a
zero of a function, which can be solved efficiently using
s vxiety of methods as !ong as satisfies some simple
conditions ??. If an object is not initially visible, we de-
termine whether to zero F1 or F2 using Elif will fill in
details. In some cases, we simply don’t bother looking
for a dead-leg since we are certain not to find one; these
are cases where the extreme elevation is out of bounds
and the rate of change of the elevation changes provide
better description of this case, and explain why
we don’t bother. Perhaps move this to another
section?

Properties of the dead-legs Let us now consider
the zeros of the functions F1 and F2 and the dead-legs
that are defined by them. We want to do this for two
reasons. First, the behavior of zero-finding algorithms
depends on how many zeros there are and how they are
distributed. Second, the resulting dead-legs may not be
feasible given other constraints on how the aircraft flies
that are not present in the definition of the zero-finding
problems.

First of all; we observe that there are an infinite num-
ber of zeros of both F1 and F2. This is because we have
imposed no restriction on b, and d. In particular, we
can always find a sequence of increasingly long dead-
legs that bring the object to an extreme elevation limit.
This does not pose a serious problem, because of the
dead-leg duration restriction imposed by the Forward-
Planner algorithm. However, it means that we might
not find the shortest dead leg, and thereby incorrectly
conclude that some observation is not feasible.

Also, not all zeros correspond to valid dead-legs. For
example, a dead leg whose duration is negative is impos-
sible for the aircraft to fly; similarly, a dead-leg whose
duration exceeds the maximum allowed is forbidden. A
more interesting example concerns limitations imposed
by the minimum turn duration of the aircraft. A stan-
dard rate turn for a 747 is 180 degrees in 2 minutes. If
the heading change and duration of the dead-leg vic-
late this constraint, then the minimum dead-leg is also
impossible to achieve.

Despite these drawbacks, we should point out that
this method has two significant advantages over the
brute force approach we used previously. First, we have
imposed no limitations on the heading or durations of
the dead-legs. Thus, we might find dead-legs we were
unable to find before using this new method. Second,
since zerc-finding algorithms are usually quite fast, we
hope that employing such a method will dramatically
speed up the feasibility check, and therefore the flight
planning algorithm overall.

-..

Finding dead-legs By Zeroing
Newton’s Method and Ratio of
Determinants Update
Newton’s Method is our choice for finding the zeros of
F1 and F2. It is simple to implement and very fast.
Newton’s Method requires an initial guess for the zero;

let this be denoted b1,dl with future iterates denoted
b,,d, . For functions F of 2 inputs and 2 outputs, the
method proceeds as follows:
1.

2.

3.

4.

5.
6.

CGIXpiite F(5i, d i) =< fi(bi, d i) , f 2 (b i , d i) >=<
f l , f 2 >
Compute the Jacobian (matrix of partial derivatives):

Compute the determinant of J : IJI = ps - qr. If
this is smaller than t then set I JI = t (preserving the
sign).
Compute the ratio of determinants update: db =

I J I
Set bi+l = bi + db and di+l = di + dd
If < bi+l , di+l >z< 0,O > or step limit reached, then
halt, otherwise go to step 1.

f29-flS and dd = LE$Z

Computing Derivatives Numerically
Directly calculating the derivatives of the functions Fl
and F2 is impossible because of the gridded wind model
that influences the ground track. Consequently, we
use finite differencing to compute all of our deriva-
tives numerically (GMW81). Of the available schemes,
we chose forward differencing over centered differenc-
ing because of the smaller number of function evalua-
tions required. We use two step size parameters SI, s2
in forward differencing. Suppose we are computing the
derivative at b,, d,. Forward differencing for functions
F of 2 inputs and 2 outputs, the method proceeds as
follows:
1. Compute F(b,,d,) =< f l (b , , 41, f2(b, , 4) >=<

2. Compute f i b = f I (b , + sl,d,)
3. Compute f id = fl(b,, d , + s2)
4. Compute f 2 b = f 2 (b z + S I , d,)
5. Compute f 2 d = f i (b , ,d , + s2)

6. Compute = flb-fl

7. Compute = fld-fl s2

8. Compute = fzb-fi

9. Compute 2 =

Note that more elaborate forms of numerical deriva-
tive computations are available. One reason for avoid-
ing them is the number of calls to compute Fl or F2,
which in this case requires constructing either flight
legs, dead-legs or both. Since we want to minimize
this cost, for the time being we stick with the simple
forward differencing scheme.

Zeroing FI only requires solving 1 IVP to actually
construct the flight-leg. Zeroing F2 requires solving two
IVPs per step of Newton’s Method, and two function
optimization steps to find the elevation extremes, PIUS
one more at the end to construct the flight. Thus, we
depend on performing only a small number of Newton
steps to increase the speed.

f l , f 2 >

s1

s1

e

The Initial Guess
Still need some clarification on this section Algo-
rithms like Newton’s Method are highly sensitive to the
cioseness of the initial guess to the actual zero of the
function. Since these algorithms typically follow gradi-
ents towards local zeros, it is important to ensure that
the initial guess is a good one.

Guessing the initial dead-leg duration requires es-
timating the difference in elevation that the dead-leg
must achieve, and then estimating the rate of change of
the elevation during the dead-leg. Guessing the initial
heading requires determining how an object’s elevation
is changing, and choosing the flight direction to make
the elevation change correctly.

This can’t be as complex as it appears ... Mike,
Elif? Suppose we compute the ground track for a flight
leg. We can then determine the extreme of the eleva-
tion by estimating the form of Equation 9 and decide
whether to zero Fl or Fz. We can also use Equation
9 to approximate the rate of change of the elevation as
a function of time; this is done by taking the deriva-
tive of Equation 9 and evaluating it at the position and
time at which the flight leg begins. We can also esti-
mate the rate of change of the elevation as a function
of the change in position, which requires estimating the
derivatives of Equations 1 and 2 as a function of time
at the current position and time as well.

We attempted to improve convergence when zeroing
Fz by first using Euler’s Method to construct the flight
legs. Once a zero of Fz was found this way, we then used
this as an initial guess and re-ran Newton’s Method
using Runge-Kutta to construct the flight legs. This
did not improve convergence and was more expensive,
and so we do not consider this further.

Matters of Convergence
Newton’s Method depends on the function being zeroed
to obey some properties to guarantee convergence. Our
functions do not obey these properties all of the time,
and so Newton’s Method occasionally fails to converge.

First, there may be cases where the first derivative
of F1 or F2 may be zero. This is problematic for zero-
finding algorithms, since they mostly rely on the first
derivative to provide the direction of the next move.
Ask Mike if we have concrete evidence that this
happens.

Ask Mike for clarifying details o n compact
support for newton. Newton’s Method requires that
F is defined on every element of 72’. As we have seen
above, this is not the case. F is not well defined for
sufficiently short or long dead-leg durations. The prob-
lem with long durations is due to the built-in nature
of the fuel model, since fuel consumption and aircraft
weight are so intertwined. Essentially, if a Newton step
requires the aircraft to fly long enough that it would
run out of fuel, we can’t evaluate the ground track of
the flight-leg ’. The problem with short durations has

2Curiously enough, the problem with negative durations
does not exist with the simple flight dynamics constraints;
these are solved using spherical triangles, and a negative

been explained above.
Finally, since we have only discrete approximations

of the continuous functions that define the wind speed
and direction, we know that F1 and FZ are not actually
continuous and differentiable functions as implemented
inside the constraint reasoning system. Thus, it is pos-
sible that the zeros will be badly behaved because of
this approximation as well.

These factors mean that convergence of Newton’s
method may be interrupted if any intermediate step
violates one of these conditions. This is a problem be-
cause it is conceivable that the zero found by Newton’s
method can correspond to a legitimate supporting dead-
leg even if an iteration of Newton’s method corresponds
to a senseless dead-leg. If the function or the deriva-
tives can’t be evaluated during Newton’s Method, our
only option is to truncate the feasibility check and re-
port that the observation is not feasible. Additionally,
we could find Newton’s Method failing to converge or
converging after a large number of steps; we thus use a
cutoff value to terminate search.

Empirical Results
We evaluated the ideas outlined above using several ex-
periments.

1.

2.

3.

4.

5.

relaxing the feasibility check does not cost in terms
of goodness of plans
number of times newton’s method fails to find a good
dead-leg when brute did
number of newton’s violating a condition during iter-
ation when a sensible dead leg could result (difficult
to test all of these because of model changes)
speedups due to Newton’s method for relaxed feasi-
bility check
impact of variations on Newton (cutoff for too long
or too short/negative steps, error, etc.)

Impact on Planning Model
In this section we discuss the impact the above changes
have on the underlying model used by the planner. Pre-
viously, the planner had to perform an explicit search
for dead-legs for observations. However, by using the
above tools, we can now write a deterministic procedure
that maps a permutation of observations and a takeoff
time into a legal flight pian and a set of observations
that were not performed. This simplifies the planning
model a great deal, and makes it easier to consider al-
gorithms like GAS, SA and SWO that operate directly
on the permutation space. As we have said above, the
continuous model is not perfect, but is good enough.

It is possible to make too much of this. For instance,
the brute force search of the original Forwardplanner
would find the optimal shortest dead-leg if it could
search over the full range of headings. Thus, choos-
ing to view this component as a part of the planner

flight duration simply changes one of the coordinates of the
triangles. Thus, we could try replacing failed evaluations of

with an Euler’s method approximation, but we didn’t.

c

instead of an incomplete procedural constraint is some-
thing of a matter of taste. It is also straightforward to
build GA, SA and SWO based algorithms on the same
ccrnpcne&s as the FcxwardP!anner is bui!t, on. HQW-
ever, the machinery described in this paper makes these
options much more palatable (at least to me.)

Complete search is now actually feasible if the num-
ber of start times is not too high. Annecdotal evidence
indicates that this may be true.

Conclusions and Future Work
In this paper we restricted the feasibility check to re-
duce the number of IVPs and BVPs to solve. We can
also relax the definition of feasibility and drop the check
on the return to the landing airport altogether. The
consequence of doing this is that a flight plan may vi-
olate the fuel constraint and either need to be repaired
or rejected completely. This may be justified because
throughout most of the planning process this condition
is trivially satisfied. However, the costs of repair and
rejection sampling were deemed too high at this time.
Relaxing the feasibility check by only ensuring that the
observation is visible immediately after a dead-leg is a
more dangerous proposition, because the frequency of
high latitude observing almost ensures rejection sam-
pling or repair will be needed.

We should point out that we can define an f4 which
accounts for the difference between the amount of fuel
remaining to get the aircraft to the landing airport and
the amount of fuel consumed by the leg home. Doing
so would allow us to use the more restrictive defini-
tion of feasibility while paying only minimal overhead
in the number of BVPs and IVPs that we must solve.
However, no method of doing so we have yet discovered
avoids the pitfalls described previously. Letting f4 = 0
if the landing airport is reachable creates many situa-
tions where the first derivative of f4 is zero, which is
bad. Forcing f4 = 0 only if exactly enough fuel is left
to get to the landing airport is equally bad.

The condition on dead-legs is ”locally optimal” in the
sense that it is the best action to support one observa-
tion. However, it may adversely affect the rest of the
plan. Currently, we rely on repeated sampling to find
good plans, but we know we only sample some of the
possible plans,and may miss the best possible plan, Ex-
tensions of the functions to zero may fki this but it’s
hard to see what to do.

We intuitively define criteria to minimize the dead-
leg duration (e.g. dead-leg ends with us flying towards
the object). We haven’t proved this is shortest even
on spherical earth with no winds, but believe it’s cor-
rect. Other criteria might be better given that we must
account for winds and the like.

make sure to reference boddy and johnson or
boddy and krebsbach as appropriate.

J. Frank and A. J6nssonE. Kurklu. Sofia’s
choice: Scheduling observations for an airborne
observatory. Proceedings of the 13th Interna-
tional Conference on Automated Planning and
Scheduling, 2003.
P. Gill, W. Murray, and M. Wright. Practical
Optimization. Academic Press, 1981.
J. Meeus. Astronomical Algorithms.
Willmann-Bell, Inc., 1991.

References
J. Ferziger. Numerical Methods for Engineer-
ing Applications. John Wiley and Sons, 1981.

